writing.exchange is one of the many independent Mastodon servers you can use to participate in the fediverse.
A small, intentional community for poets, authors, and every kind of writer.

Administered by:

Server stats:

334
active users

#RecommenderSystems

0 posts0 participants0 posts today
Data School<p>🔗 Whether you're a researcher, data scientist, journalist, or industry professional, this workshop will spark meaningful conversations about how we can collaborate to advance technology responsibly and ethically. </p><p>👉 𝗗𝗼𝗻’𝘁 𝗺𝗶𝘀𝘀 𝗼𝘂𝘁! 𝗟𝗲𝗮𝗿𝗻 𝗺𝗼𝗿𝗲 𝗮𝗻𝗱 𝗿𝗲𝗴𝗶𝘀𝘁𝗲𝗿 𝘁𝗼𝗱𝗮𝘆: <a href="https://impact.dataschool.nl/events/making-a-difference-societal-impact-through-collaborative-research/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">impact.dataschool.nl/events/ma</span><span class="invisible">king-a-difference-societal-impact-through-collaborative-research/</span></a> </p><p><a href="https://social.edu.nl/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a> <a href="https://social.edu.nl/tags/Conference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Conference</span></a> <a href="https://social.edu.nl/tags/Collaboration" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Collaboration</span></a> <a href="https://social.edu.nl/tags/Algorithms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Algorithms</span></a> <a href="https://social.edu.nl/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://social.edu.nl/tags/Ethics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Ethics</span></a></p>
Killian Mangan🇮🇪<p>On top of banning all Recommender Systems on social media, we must change from being powerless users of Tech giant services into having democratic collective control of algorithms on all services we use! </p><p>Tech platform co-ops creating apps and services which users can democratically and collectively control 🙌</p><p><a href="https://mastodon.ie/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.ie/tags/Algorithm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Algorithm</span></a> <a href="https://mastodon.ie/tags/Internet" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Internet</span></a> <a href="https://mastodon.ie/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a> <a href="https://mastodon.ie/tags/AIRegulation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIRegulation</span></a> <a href="https://mastodon.ie/tags/Tech" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Tech</span></a> <a href="https://mastodon.ie/tags/Technology" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Technology</span></a> <a href="https://mastodon.ie/tags/Politics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Politics</span></a> <a href="https://mastodon.ie/tags/EchoChamber" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EchoChamber</span></a> <a href="https://mastodon.ie/tags/SocialMedia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SocialMedia</span></a> <a href="https://mastodon.ie/tags/Algorithms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Algorithms</span></a> <a href="https://mastodon.ie/tags/Coops" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Coops</span></a> <a href="https://mastodon.ie/tags/Cooperatives" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Cooperatives</span></a> <a href="https://mastodon.ie/tags/Democracy" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Democracy</span></a> <a href="https://mastodon.ie/tags/Culture" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Culture</span></a> <a href="https://mastodon.ie/tags/BigTech" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>BigTech</span></a> <a href="https://mastodon.ie/tags/Extremism" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Extremism</span></a></p>
Valeriy M., PhD, MBA, CQF<p>With **Conformal Prediction**, fairness isn’t just an afterthought—it’s **built into** AI-driven recommendations. </p><p>💡 What’s your take on fairness in recommender systems? Let’s discuss! ⬇️ </p><p><a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://sigmoid.social/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a> <a href="https://sigmoid.social/tags/ConformalPrediction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ConformalPrediction</span></a> <a href="https://sigmoid.social/tags/FairAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FairAI</span></a> <a href="https://sigmoid.social/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a> <a href="https://sigmoid.social/tags/LLMs" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LLMs</span></a></p>
Philipp Müller<p>NEW STUDY OUT IN IC&amp;S</p><p>Putting <a href="https://sciences.social/tags/FilterBubble" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FilterBubble</span></a> Effects to the Test</p><p>In an experimental survey study with real <a href="https://sciences.social/tags/news" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>news</span></a> <a href="https://sciences.social/tags/recommendersystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recommendersystems</span></a> (<a href="https://sciences.social/tags/NRS" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NRS</span></a>), we find **limited** support for <a href="https://sciences.social/tags/polarization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polarization</span></a> effects of <a href="https://sciences.social/tags/algorithms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithms</span></a> inducing "filter bubble" like information environments.</p><p>Data also show how balanced algorithms may promote <a href="https://sciences.social/tags/depolarization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>depolarization</span></a>.</p><p><a href="https://doi.org/10.1080/1369118X.2024.2435998" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doi.org/10.1080/1369118X.2024.</span><span class="invisible">2435998</span></a></p><p><span class="h-card" translate="no"><a href="https://sciences.social/@commodon" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>commodon</span></a></span> <span class="h-card" translate="no"><a href="https://a.gup.pe/u/communicationscholars" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>communicationscholars</span></a></span> <a href="https://sciences.social/tags/PoliticalCommunication" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PoliticalCommunication</span></a> <a href="https://sciences.social/tags/SocialMedia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SocialMedia</span></a></p>
AlgorithmWatch<p>The next round of our Algorithmic Accountability Reporting Fellowship is just around the corner! 🚀 </p><p>Got questions? Join us for a Q&amp;A session with Naiara Bellio from our Journalism team TODAY at 6 pm: <a href="https://algorithmwatch.org/en/apply-fellowship/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">algorithmwatch.org/en/apply-fe</span><span class="invisible">llowship/</span></a></p><p>In this round, we're diving deep into the political economy of AI, exploring crucial topics like <a href="https://chaos.social/tags/generativeAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>generativeAI</span></a> and <a href="https://chaos.social/tags/recommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recommenderSystems</span></a>. Our aim? To unravel the AI value chain and its far-reaching impact on society, particularly on specific population groups.</p>
Jannis Strecker<p>Are you working on <a href="https://hci.social/tags/personalization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>personalization</span></a>, <a href="https://hci.social/tags/recommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recommenderSystems</span></a>, or <a href="https://hci.social/tags/adaptiveInterfaces" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>adaptiveInterfaces</span></a> in the fields of <a href="https://hci.social/tags/HCI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>HCI</span></a>, <a href="https://hci.social/tags/CSCW" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CSCW</span></a>, and/or <a href="https://hci.social/tags/XR" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>XR</span></a>?</p><p>Consider submitting to our workshop ABIS 2024 – International Workshop on Personalized Human-Computer Interaction and Recommender Systems held at Mensch und Computer 2024! 🚀</p><p>Submissions: 23.06.2024 (AoE) NEW!<br>Notification: Early July 2024<br>Camera-Ready: 23.07.2024<br>Workshop day: 01.09.2024 (Karlsruhe, Germany) </p><p>Find more information here: <a href="https://fg-abis.gi.de/veranstaltung/abis-2024" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">fg-abis.gi.de/veranstaltung/ab</span><span class="invisible">is-2024</span></a></p>
Panoptykon<p>Za każdym razem, gdy <a href="https://eupolicy.social/tags/UE" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UE</span></a> wypuszcza nową regulację, komisarz Thierry Breton publikuje playlistę zatytułowaną jak ta regulacja.</p><p>Dziś my* mamy playlistę dla komisarza. Dobrze byłoby żyć w świecie zdrowych algorytmów:<br><a href="https://open.spotify.com/playlist/34ymNkUEJ8LcospqjZMeW6?si=28c278cd6c534925&amp;nd=1&amp;dlsi=242d749582824199" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">open.spotify.com/playlist/34ym</span><span class="invisible">NkUEJ8LcospqjZMeW6?si=28c278cd6c534925&amp;nd=1&amp;dlsi=242d749582824199</span></a></p><p>*sieć People vs. Big Tech</p><p><a href="https://eupolicy.social/tags/fixfeed" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fixfeed</span></a><br><a href="https://eupolicy.social/tags/FixOurFeeds" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FixOurFeeds</span></a><br><a href="https://eupolicy.social/tags/TechRegulation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TechRegulation</span></a><br><a href="https://eupolicy.social/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a><br><a href="https://eupolicy.social/tags/RecSys" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecSys</span></a><br><a href="https://eupolicy.social/tags/Algorithms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Algorithms</span></a></p>
David Chavalarias - EN<p><a href="https://fosstodon.org/tags/publication" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>publication</span></a> : Can a Single Line of Code Change Society? The Systemic Risks of Optimizing Engagement in Recommender Systems on Global Information Flow, Opinion Dynamics and Social Structures </p><p>We demonstrate that engagement-maximizing algorithms necessarily lead to increased network toxicity and fragmentation of opinion space. </p><p>Everything is calibrated on real data from the <a href="https://fosstodon.org/tags/Politoscope" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Politoscope</span></a> </p><p><a href="https://fosstodon.org/tags/systemicrisks" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>systemicrisks</span></a> <a href="https://fosstodon.org/tags/DSA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DSA</span></a> <a href="https://fosstodon.org/tags/opiniondynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>opiniondynamics</span></a> <a href="https://fosstodon.org/tags/twitter" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>twitter</span></a> <a href="https://fosstodon.org/tags/polarization" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>polarization</span></a> <a href="https://fosstodon.org/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a> </p><p><a href="https://www.jasss.org/27/1/9.html" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">jasss.org/27/1/9.html</span><span class="invisible"></span></a></p>
Jan Penfrat<p>I love how when you look at one badly rated <a href="https://eupolicy.social/tags/movie" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>movie</span></a>, <a href="https://eupolicy.social/tags/Rottentomatoes" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Rottentomatoes</span></a>' <a href="https://eupolicy.social/tags/algorithm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithm</span></a> instantly suggests you to watch more badly rated movies. </p><p><a href="https://eupolicy.social/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://eupolicy.social/tags/recommendersystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recommendersystems</span></a> <a href="https://eupolicy.social/tags/AIA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AIA</span></a> <a href="https://eupolicy.social/tags/film" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>film</span></a> <a href="https://eupolicy.social/tags/rating" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>rating</span></a> <a href="https://eupolicy.social/tags/recsys" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recsys</span></a></p>
Panoptykon<p>4/5<br>It won't be easy to fix recommender systems. Imagine transforming what evolved to be a ""casino"" into a public space, transforming ""users"" into citizens...Where to start? Panoptykon, ICCL and People vs BigTech investigated their most harmful features &amp; call for change.</p><p>Fixing Recommender Systems. From identification of risk factors to<br>meaningful transparency and mitigation: <br><a href="https://panoptykon.org/fixing-rec-sys-pdf" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">panoptykon.org/fixing-rec-sys-</span><span class="invisible">pdf</span></a></p><p><a href="https://eupolicy.social/tags/EU" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>EU</span></a> <a href="https://eupolicy.social/tags/TechRegulation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>TechRegulation</span></a> <a href="https://eupolicy.social/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a> <a href="https://eupolicy.social/tags/RecSys" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecSys</span></a> <a href="https://eupolicy.social/tags/Algorithms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Algorithms</span></a></p>
Christos Argyropoulos MD, PhD<p>I wonder if anyone has bothered to look into the mathematics of <a href="https://mstdn.science/tags/recommendersystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recommendersystems</span></a> , because it is really embarrassing that papers with with 0000s of citations end up mapping to some very banal conventional <a href="https://mstdn.science/tags/statistical" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>statistical</span></a> models. <br>OTH, the latter have missed tremendous opportunities to entrench themselves (and create job opportunities for statisticians) by forgetting special cases that powered applications before the era of cheap computing that started in the 1980s.<br>It is <a href="https://mstdn.science/tags/pagerank" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>pagerank</span></a> all over again</p>
Antonio Lieto<p>New paper out in <a href="https://fediscience.org/tags/humancomputerinteraction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>humancomputerinteraction</span></a> journal: A sensemaking system for grouping and suggesting stories from multiple affective viewpoints in <a href="https://fediscience.org/tags/museums" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>museums</span></a> 50 days free access: <a href="https://www.tandfonline.com/eprint/AHINMIJGM93A9EM4IQFU/full?target=10.1080/07370024.2023.2242355" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">tandfonline.com/eprint/AHINMIJ</span><span class="invisible">GM93A9EM4IQFU/full?target=10.1080/07370024.2023.2242355</span></a></p><p><a href="https://fediscience.org/tags/hci" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>hci</span></a> <a href="https://fediscience.org/tags/recommendersystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recommendersystems</span></a> <a href="https://fediscience.org/tags/recsys" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recsys</span></a> <a href="https://fediscience.org/tags/affectivecomputing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>affectivecomputing</span></a> <a href="https://fediscience.org/tags/storytelling" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>storytelling</span></a> <a href="https://fediscience.org/tags/culturalAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>culturalAI</span></a></p><p><span class="h-card"><a href="https://a.gup.pe/u/academicchatter" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>academicchatter</span></a></span> <br><span class="h-card"><a href="https://hci.social/@cscw" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>cscw</span></a></span> <span class="h-card"><a href="https://a.gup.pe/u/digitalhumanities" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>digitalhumanities</span></a></span> </p><p><a href="https://tandfonline.com/doi/full/10.1080/07370024.2023.2242355" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">tandfonline.com/doi/full/10.10</span><span class="invisible">80/07370024.2023.2242355</span></a></p>
Victoria Stuart 🇨🇦 🏳️‍⚧️<p>Systematic Review of Filter Bubbles in Recommender Systems: Fact or Fallacy<br><a href="https://arxiv.org/abs/2307.01221" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2307.01221</span><span class="invisible"></span></a></p><p>* filter bubble: phenomenon where individuals are isolated f. diverse opinions or materials resulting in exposure to select content, leading to reinforcement of existing attitudes, beliefs, or conditions</p><p>Our review reveals evidence of filter bubbles in recommendation systems, highlighting several biases that contribute to their existence</p><p><a href="https://mastodon.social/tags/InternetSearch" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>InternetSearch</span></a> <a href="https://mastodon.social/tags/FilterBubbles" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FilterBubbles</span></a> <a href="https://mastodon.social/tags/bias" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bias</span></a> <a href="https://mastodon.social/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a></p>
Davó<p>Recommendation systems are useful, but sometimes we just want to discover new things by ourselves. In this article I present 6 alternatives to "the algorithm".</p><p><a href="https://blog.ddavo.me/posts/death-to-the-algorithm" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">blog.ddavo.me/posts/death-to-t</span><span class="invisible">he-algorithm</span></a></p><p><a href="https://mastodon.cloud/tags/algorithm" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithm</span></a> <a href="https://mastodon.cloud/tags/youtube" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>youtube</span></a> <a href="https://mastodon.cloud/tags/radio" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>radio</span></a> <a href="https://mastodon.cloud/tags/ethics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ethics</span></a> <a href="https://mastodon.cloud/tags/blog" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>blog</span></a> <a href="https://mastodon.cloud/tags/recommendersystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recommendersystems</span></a> <a href="https://mastodon.cloud/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://mastodon.cloud/tags/datagovernance" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>datagovernance</span></a></p>
Tero Keski-Valkama<p><a href="https://rukii.net/tags/NVIDIA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>NVIDIA</span></a> Announces <a href="https://rukii.net/tags/DGX" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DGX</span></a> GH200 <a href="https://rukii.net/tags/AI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>AI</span></a> <a href="https://rukii.net/tags/Supercomputer" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Supercomputer</span></a> | NVIDIA Newsroom</p><p>"New Class of AI Supercomputer Connects 256 <a href="https://rukii.net/tags/GraceHopper" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GraceHopper</span></a> Superchips Into Massive, 1-<a href="https://rukii.net/tags/Exaflop" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Exaflop</span></a>, 144TB <a href="https://rukii.net/tags/GPU" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GPU</span></a> for Giant Models Powering <a href="https://rukii.net/tags/GenerativeAI" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>GenerativeAI</span></a>, <a href="https://rukii.net/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a>, <a href="https://rukii.net/tags/DataProcessing" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>DataProcessing</span></a>"</p><p><a href="https://nvidianews.nvidia.com/news/nvidia-announces-dgx-gh200-ai-supercomputer" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">nvidianews.nvidia.com/news/nvi</span><span class="invisible">dia-announces-dgx-gh200-ai-supercomputer</span></a></p>
Cheng Soon Ong<p>Content moderation and <a href="https://masto.ai/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a> are the most widely deployed <a href="https://masto.ai/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>MachineLearning</span></a> based action taking systems. By action taking, I mean an algorithm that suggests a particular decision that impacts human actions. Using this view of recommender systems, we can consider how to increase the <a href="https://masto.ai/tags/diversity" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>diversity</span></a> of online content by re-ranking recommended items to encourage creation of diverse content in the long term.</p><p><a href="https://arxiv.org/abs/2302.04336" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2302.04336</span><span class="invisible"></span></a></p>
John Leonard<p>Social media: what happens when AI takes over?</p><p>AI is about to make recommender algorithms a whole lot more effective, and potentially more dangerous, but it doesn't have to be that way. </p><p>Researchers <span class="h-card"><a href="https://equel.social/@alasaarela" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>alasaarela</span></a></span> and <span class="h-card"><a href="https://social.coop/@lukethorburn" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>lukethorburn</span></a></span> are separately working on recommender algorithms that optimise for trust rather than attention and conflict. [Reg wall]</p><p><a href="https://www.computing.co.uk/analysis/4074470/social-media-happens-ai-takes" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">computing.co.uk/analysis/40744</span><span class="invisible">70/social-media-happens-ai-takes</span></a></p><p><a href="https://mastodon.social/tags/technews" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>technews</span></a> <a href="https://mastodon.social/tags/ai" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ai</span></a> <a href="https://mastodon.social/tags/algorithms" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>algorithms</span></a> <a href="https://mastodon.social/tags/socialmedia" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>socialmedia</span></a> <a href="https://mastodon.social/tags/recommendersystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recommendersystems</span></a> <a href="https://mastodon.social/tags/bridgingsystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>bridgingsystems</span></a></p>
Romain Deffayet<p>In the latest SIGIR Forum issue, we discussed offline evaluation for RL-based <a href="https://sigmoid.social/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a> and noted that the most common evaluation protocol, i.e., next-item prediction, is unsuited to such approaches.</p><p>(with Thibaut Thonet, Jean-Michel Renders, <span class="h-card"><a href="https://mastodon.acm.org/@mdr" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>mdr</span></a></span> )<br>Paper ➡️ <a href="https://sigir.org/wp-content/uploads/2023/01/p03.pdf" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">sigir.org/wp-content/uploads/2</span><span class="invisible">023/01/p03.pdf</span></a></p><p><a href="https://sigmoid.social/tags/RecSys" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecSys</span></a> <a href="https://sigmoid.social/tags/ReinforcementLearning" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>ReinforcementLearning</span></a> <a href="https://sigmoid.social/tags/PaperThread" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PaperThread</span></a></p>
Kee Hinckley<p><span class="h-card"><a href="https://saturation.social/@clive" class="u-url mention" rel="nofollow noopener noreferrer" target="_blank">@<span>clive</span></a></span> That’s really interesting. (Someone better tell Meta. :)</p><p>I would argue though that there *is* an algorithm they might be doing better than other platforms, and that’s in classifying the video content. I could see that having a multiplier effect on any recommendation algorithm.</p><p>But I found it interesting reading this right after reading Cory Doctorow’s essay on social quitting; particularly the part about the willingness to throw in wildcards because they aren’t focused on high profile influencers.</p><p>What I wonder is if they can afford to continue doing that in the long run, or will the economics lead them down the same path as Instagram, where ads and influencers start to dominate, and the things that make them unique go away?</p><p><a href="https://doctorow.medium.com/social-quitting-f049b33ad3f6" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">doctorow.medium.com/social-qui</span><span class="invisible">tting-f049b33ad3f6</span></a></p><p><a href="https://infosec.exchange/tags/recommendersystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>recommendersystems</span></a> <a href="https://infosec.exchange/tags/imagerecognition" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>imagerecognition</span></a></p>
Lucas Bechberger<p>I had the pleasure of cofounding the interdisciplinary <a href="https://sigmoid.social/tags/CARLA" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>CARLA</span></a> workshop on <a href="https://sigmoid.social/tags/concept" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>concept</span></a> research: <a href="https://conceptresearch.github.io/CARLA/" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">conceptresearch.github.io/CARL</span><span class="invisible">A/</span></a><br>We also published an edited volume on the topic (open access): <a href="https://link.springer.com/book/10.1007/978-3-030-69823-2" rel="nofollow noopener noreferrer" target="_blank"><span class="invisible">https://</span><span class="ellipsis">link.springer.com/book/10.1007</span><span class="invisible">/978-3-030-69823-2</span></a></p><p>I recently transitioned to an industry position, where I work as machine learning engineer on <a href="https://sigmoid.social/tags/RecommenderSystems" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>RecommenderSystems</span></a>.</p><p>Switching to Mastodon for the obvious reasons (this weird guy, who bought twitter and who is posting and doing weird stuff)... Looking forward to reading about your insights!</p>